Project Description

Fatal Familial Insomnia Fast Facts

Fatal familial insomnia (FFI) is a degenerative brain disease that causes the inability to sleep and other neurological symptoms.

FFI progresses rapidly and is always fatal, usually within three years after the beginning of symptoms

FFI is caused by the action of a defective protein that causes damage to brain tissue.

FFI is a genetic disease that runs in families. However, in rare cases, the disorder may occur spontaneously in someone with no family history of the condition.

Fatal familial insomnia (FFI) is a degenerative brain disease that causes the inability to sleep and other neurological symptoms.

What is Fatal Familial Insomnia?

Fatal familial insomnia (FFI) is a rare degenerative brain disorder caused by defective proteins that damage brain tissue. As a result, FFI causes an inability to sleep and sometimes other neurological symptoms as well. Symptoms progressively worsen, and the disease is typically fatal between six months and three years after symptoms start.

Symptoms of FFI

Common symptoms of FFI include:

  • Inability to fall asleep or stay asleep
  • Problems with concentration
  • Cloudy thought processes
  • Memory impairment
  • Problems with coordination
  • Muscle spasms or stiffness
  • Speech difficulties
  • Vision impairment
  • Problems swallowing
  • Unintended weight loss
  • Rapid heart rate
  • High blood pressure
  • Inability to regulate body temperature
  • Excessive sweating
  • Constipation
  • Sexual dysfunction

What Causes Fatal Familial Insomnia?

FFI is caused by a protein called a prion. Prions exist in normal cells and are usually harmless. However, in FFI and other diseases called transmissible spongiform encephalopathies (TSEs), abnormally formed prions cause damage to cells in the brain and the central nervous system. These abnormal prions also make other prions develop abnormally, causing the disease to spread and produce progressively worsening symptoms.

FFI is triggered by abnormal changes (mutations) in a gene called the PRNP gene. The PRNP gene carries instructions for producing a prion protein, and the mutations cause the resulting prion to be malformed. In FFI, the misshapen prions accumulate and spread through the part of the brain responsible for regulating sleep and other automatic bodily functions. As the prions cause progressive damage to this part of the brain, the disorder’s symptoms result.

Is Fatal Familial Insomnia Hereditary?

The PRNP mutations that cause FFI are inherited in an autosomal dominant pattern, meaning that children may develop the disorder if they inherit even one copy of the mutated gene from either of their parents. If a parent carries the disorder-causing mutation, they will have a 50 percent chance of having an affected child with each pregnancy. The parent may also develop FFI themselves, but not everyone with a mutated prion gene will develop the disease.

In rare cases, the disease-causing mutation occurs spontaneously during sperm or egg cell production even though neither parent carries the mutation. In these cases, a person can develop FFI when there is no family history of the disease.

In even rarer cases, the disease can develop in someone who does not have a mutated PRNP gene. This form of the disease is called sporadic fatal insomnia (SFI).

How Is Fatal Familial Insomnia Detected?

Symptoms of FFI can begin any time in adulthood, and the average age of onset is 40. However, the sporadic form of the disease may start somewhat later.

The earliest signs of FFI typically include:

  • Minor problems with sleep, including trouble staying asleep
  • Restless sleep
  • Muscle twitching or stiffness

The earliest symptoms of sporadic fatal insomnia may differ from the familial form of the disease. For example, sleep disruptions may be unnoticeable. Instead, the person may experience rapid deterioration of mental function and physical coordination.

How Is Fatal Familial Insomnia Diagnosed?

No single test can reliably identify FFI, but some tests and exams can help diagnose the disease and rule out other potential causes of the symptoms. Possible diagnostic steps include:

  • Sleep studies (polysomnography) to detect problems with sleep patterns.
  • Positron emission tomography (PET) scan to detect decreased activity in the part of the brain responsible for sleep.
  • Magnetic resonance imaging (MRI) to detect the pattern of brain degeneration characteristic of FFI.
  • Tests of the cerebrospinal fluid (CSF) to detect proteins associated with defective prions or the abnormal prions themselves.
  • Genetic testing to look for the PRNP gene mutations associated with FFI.

PLEASE CONSULT A PHYSICIAN FOR MORE INFORMATION.

How Is Fatal Familial Insomnia Treated?

FFI has no cure, and no treatment will halt or reverse the progression of symptoms. Treatment options focus on improving the patient’s quality of life as much as possible.

How Does Fatal Familial Insomnia Progress?

FFI is progressive, and symptoms worsen quickly. The disease is invariably fatal within a few months to a few years after the initial onset of symptoms.

Long-term and potentially fatal complications of FFI can include:

  • Loss of coordination
  • Hallucinations
  • Confusion
  • Dementia
  • Coma
  • Pneumonia or other respiratory infections
  • Heart failure

How Is Fatal Familial Insomnia Prevented?

There is no known way to prevent FFI or SFI. However, a genetic counselor can advise people with a family history of FFI about their risk of having children with the condition.

Fatal Familial Insomnia Caregiver Tips

  • Take care of yourself. Caregivers for people with a progressive disease like FFI are susceptible to mental and physical health problems if they don’t take care of themselves. Don’t feel guilty for needing occasional time away from the demands of caregiving, and don’t hesitate to ask for help from family and friends.
  • Find sources of support. Organizations such as the Creutzfeldt-Jakob Disease Foundation can guide you to educational resources, support groups, and contact with other families affected by FFI and other TSEs.

Fatal Familial Insomnia Brain Science

Prion proteins are long chains of amino acids that occur in normal cells, especially in nerve cells in the brain. Scientists are not yet sure of the role prions play in healthy brain cells, but when prions become deformed, as they do in FFI and other TSEs, they clump together. These abnormal protein clumps seem to impair brain cell function and lead to cell damage and death.

Prion diseases are infectious and progressive because abnormal prions cling to normal prions and cause the normal prions to become deformed. In this manner, abnormal prions spread through infected tissue and cause progressive brain damage.

In FFI, the damage caused by prions specifically affects the thalamus, the part of the brain that controls sleep, body temperature, breathing, heart rate, and other automatic and involuntary functions. In this way, FFI differs from other TSEs, which typically cause more widespread brain damage.

Fatal Familial Insomnia Research

Title:  PRION-1: Quinacrine for Human Prion Disease

Stage: Completed

Principal Investigator: John Collinge, MD, FRCP

National Prion Clinic

London, UK

PRION-1 aims to assess the activity and safety of Quinacrine (Mepacrine hydrochloride) in human prion disease. It also seeks to establish an appropriate framework for the clinical assessment of therapeutic options for human prion disease that can be refined or expanded in the future as new agents become available.

The human prion diseases have been traditionally classified into Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease and kuru. They can alternatively be classified into three causal categories: sporadic, acquired, and inherited. The appearance of a new human prion disease, variant CJD (vCJD), in the United Kingdom from 1995 onwards, and the experimental evidence that this is caused by the same prion strain as that causing bovine spongiform encephalopathy (BSE) in cattle, has raised the possibility that a major epidemic of vCJD will occur in the United Kingdom and other countries as a result of dietary or other exposure to BSE prions. These concerns have led to intensified efforts to develop therapeutic interventions.

Quinacrine has been previously used to treat other diseases such as malaria; however, it was found to have serious side effects and is no longer licensed in the United Kingdom. There is only very limited evidence from laboratory tests for the potential use of quinacrine in human prion disease, and the evidence to date for any possible clinical benefit is very scarce. The PRION-1 trial is being undertaken since no other drugs are currently available that are considered suitable for human evaluation.

 

Title: The Role of the Coagulation Pathway at the Synapse in Prion Diseases

Stage: Not Yet Recruiting

Principal investigator: Oren Cohen, MD

Sheba Medical Center

Gottingen, Germany

The study hypothesis is that the harmful effect of prions on the brain may be mediated (at least partially) by the activation of serine proteases involved in the coagulation system. If this is true, then measurement of the activity of the coagulation system may be a marker of disease onset (in higher-risk individuals such as E200K* carriers) and for disease progression or activity in affected individuals. In addition, modulation of the coagulation system activity may be a potential tool for therapeutic intervention.

We plan to collect Cerebrospinal fluid (CSF) samples for thrombin activity assay to test whether there is a difference in thrombin activity in the CSF between CJD (Creutzfeldt-Jakob disease) and non-CJD patients. CSF samples will be obtained from two sources 1. Patients with familial or sporadic CJD and control patients with other neurodegenerative disorders (e.g., SDAT**, NPH) will be evaluated in Sheba Medical Center 2. From our collaborating group of Prof. Zerr in the German Prion Referral Center at the University of Gottingen, which has a collection of thousands of CSF samples from patients with familial and sporadic CJD as well as ideal controls with other degenerative brain diseases.

The study has two sections:

Prospective part in which we plan to recruit 25 patients with CJD and 25 patients with other types of dementia from Sheba Medical Center (SMC). Before inclusion in the study, a senior neurologist will interview the patient and will verify that they fully understand the objectives of the study and they are mentally qualified to sign the informed consent form (severely demented patients who will not be able to adequately consider participation in the study will be excluded).

Cognitive performance will be evaluated using the Mini-mental Status Examination and Frontal Assessment Battery scales.

No clinical data other than the cognitive assessment and those needed for the clinical workup will be especially collected for this study.

CSF samples from CJD patients and patients with other types of dementia will be shipped to us from our collaborators in Germany and will be assayed for Thrombin activity. We plan to recruit 100-200 CJD patient CSF samples and an equal number of samples from age-matched controls to this part of the study.

Thrombin activity (for samples from both parts of the study) will be assayed as follows: CSF sample will be placed in a black 96 well dish (10 per well). A fluorometric assay will measure thrombin activity, quantifying the cleavage of the synthetic peptide substrate Boc-Asp(OBzl)-Pro-Arg-AMC*** (I-1560, Bachem, Switzerland, 13 molar final concentration). Measurements will be performed by the Infinite 2000 microplate reader (Tecan, infinite 200, Switzerland) with excitation and emission filters of 360±35 and 460±35 nm, respectively. CSF testing for thrombin activity will be conducted in Professor Chapman’s laboratory in Sheba. This laboratory is actively engaged in research on the role of thrombin and PAR-1 in diseases of the nervous system. It is fully equipped to perform the biochemical and protein levels experiments.

The assay has the potential for commercialization as a diagnostic test for CJD. In addition, there is the potential to develop therapeutic agents targeting excessive thrombin activation.

You Are Not Alone

For you or a loved one to be diagnosed with a brain disease or disorder, is overwhelming, and leads to a quest for support and answers to important questions. UBA has built a safe, caring and compassionate community for you to share your journey, connect with others in similar situations, learn about breakthroughs, and to simply find comfort.

united brain association

Make a Donation, Make a Difference

We have a direct connection with scientists so we are privy to projects in all stages of research. This gives us the insight to identify projects and allocate the dollars needed to find cures. Donate generously today to make a difference for future generations and your loved ones.  Your donation saves lives and brings us closer to a cure.

Share Your Story

If you have an experience, a story, or someone in your life you want to recognize for their strength and willpower, please share it with us. We want to hear from you because listening is part of healing.

Connect With Us

Receive news on Brain Awareness, the Latest Research, and Personal Stories